Преобразование энергии солнечного света и организмы использующие её
Сегодня мы поговорим об организмах, которые используют в своей жизнедеятельности солнечную энергию. Для этого нужно затронуть такую науку, как биоэнергетика. Она изучает способы преобразования энергии живыми организмами и использование её в процессе жизнедеятельности. В основе биоэнергетики лежит термодинамика. Эта наука описывает механизмы преобразования различных видов энергии друг в друга. В том числе, использование и преобразование различными организмами солнечной энергии. С помощью термодинамики можно полностью описать энергетический механизм процессов, происходящих вокруг нас. Но с помощью термодинамики нельзя понять природу того или иного процесса. В этой статье мы попробуем объяснить механизм использования солнечной энергии живыми организмами.
Содержание статьи
Как живые организмы получают солнечную энергию?
Для описания преобразования энергии в живых организмах или прочих объектах нашей планеты следует рассмотреть их с точки зрения термодинамики. То есть, системы, обменивающейся энергией с окружающей средой и объектами. Их можно подразделить на следующие системы:
- Закрытые;
- Изолированные;
- Открытые.
Живые организмы, о которых идёт речь в этой статье, относятся к открытым системам. Они ведут непрерывный обмен энергией с ОС и окружающими объектами. Вместе с водой, воздухом, едой в организм поступают всевозможные химические вещества, которые отличаются от него по химическому составу. Попадая в организм, происходит их глубокая переработка. Они проходят ряд изменений и становятся подобны химическому составу организма. После этого они временно входят в состав организма.
Через некоторое время эти вещества разрушаются и обеспечивают организм энергией. Их продукты распада удаляются из организма. Их место в организме заполняют другие молекулы. При этом целостность структуры организма не нарушается. Такое усвоение и переработка энергии в организме обеспечивает обновление организма. Энергетический обмен необходим для существования всех живых организмов. При остановке процессов преобразования энергии в организме он умирает.
Солнечный свет является источником биологической энергии на Земле. Ядерная энергия Солнца обеспечивает выработку лучистой энергии. Атомы водорода в нашей звезде в результате реакции переходят в атомы He. Энергия, освобождающаяся во время реакции, выделяется в виде гамма-излучения. Сама реакция выглядит следующим образом:
4Н ⇒ Не4 + 2е + hv, где
v ─ длина волны гамма-лучей;
h ─ постоянная Планка.
В дальнейшем, после взаимодействия гамма-излучения и электронов, энергия выделяется в виде фотонов. Эту световую энергию излучает небесное светило.
Солнечная энергия при достижении поверхности нашей планеты улавливается и преобразуется растениями. В них энергия солнца превращается в химическую, которая запасается в виде химических связей. Это связи, которые в молекулах соединяют атомы. Примером может служить синтез глюкозы в растениях. Первая стадия этого преобразования энергии ─ фотосинтез. Растения обеспечивают его с помощью хлорофилла. Этот пигмент обеспечивает превращение лучистой энергии в химическую. Происходит синтез углеводов из H2O и CO2. Это обеспечивает рост растений и передачу энергии на следующую ступень.
Следующий этап передачи энергии происходит от растений животным или бактериям. На этом этапе энергия углеводов в растениях преобразуется в биологическую. Это происходит в процессе окисления молекул растений. Величина полученной энергии соответствует тому количеству, которое было затрачено на синтез. Частично эта энергия преобразуется в тепло. В результате энергия запасается в макроэргических связях аденозинтрифосфата. Так солнечная энергия, проходя ряд превращений, оказывается в живых организмах уже в другой форме.
Здесь стоит дать ответ на часто задаваемый вопрос: «Какой органоид использует энергию солнечного света?». Это хлоропласты, участвующие в процесс фотосинтеза. Они используют её для синтеза из неорганических веществ органических.
В непрерывном потоке энергии заключается суть всего живого. Он постоянно движется между клетками и организмами. На клеточном уровне для преобразования энергии существуют эффективные механизмы. Можно выделить 2 основные структуры, где происходит превращение энергии:
- Хлоропласты;
- Митохондрии.
Человек, как и другие живые организмы на планете, пополняет энергетический запас из продуктов. Причём, часть потребляемых продуктов растительного происхождения (яблоки, картофель, огурцы, помидоры), а часть животного (мясо, рыба и другие морепродукты). Животные, которые мы употребляем в пищу, энергию также получают из растений. Поэтому вся получаемая нашим организмом энергия преобразуется из растений. А у них она появляется в результате преобразования солнечной энергии.
По типу получения энергии все организмы можно разделить на две группы:
- Фототрофы. Черпают энергию из солнечного света;
- Хемотрофы. Получают энергию во время окислительно-восстановительной реакции.
То есть, солнечная энергия используется растениями, а животные получают энергию, которая находится в органических молекулах во время поедания растений.
Вернуться к содержанию
Как преобразуется энергия в живых организмах?
Существует 3 основных разновидности энергии, преобразуемой организмами:
- Преобразование лучистой энергии. Этот вид энергии несёт солнечный свет. В растениях лучистая энергия улавливается пигментом хлорофиллом. В результате фотосинтеза она превращается в химическую энергию. Та, в свою очередь, используется в процессе синтеза кислорода и других реакциях. Солнечный свет несёт в себе кинетическую энергию, а в растениях она превращается в потенциальную. Полученный энергетический запас сохраняется в питательных веществах. К примеру, в углеводах;
- Преобразование химической энергии. Из углеводов и прочих молекул она превращается в энергию макроэргических фосфатных связей. Эти преобразования проходят в митохондриях.
- Преобразование энергии макроэргических фосфатных связей. Она расходуется клетками живого организма для совершения разных видов работ (механическая, электрическая, осмотическая и т. д.).
Во время этих трансформаций часть энергетического запаса теряется и рассеивается в виде тепла.
Вернуться к содержанию
Использование организмами накопленной энергии
В процессе метаболизма организм получает энергетический запас, расходуемый на совершение биологической работы. Это может быть световая, механическая, электрическая, химическая работа. И очень большая часть энергии организм расходует в виде тепла.
Ниже кратко описаны основные типы энергии в организме:
- Механическая. Характеризует движение макротел, а также механическую работу по их перемещению. Её можно разделить на кинетическую и потенциальную. Первая определяется скоростью передвижения макротел, а вторая ─ их местоположением по отношению друг к другу;
- Химическая. Определяется взаимодействием атомов в молекуле. Она является энергией электронов, которые двигаются по орбитам молекул и атомов;
- Электрическая. Это взаимодействие заряженных частиц, которое вызывает их движение в электрическом поле;
- Осмотическая. Расходуется при передвижении против градиента концентраций молекул вещества;
- Регуляторная энергия.
- Тепловая. Определяется хаотическим движением атомов и молекул. Основной характеристикой этого движения является температура. Этот вид энергии является самым обесцененных из всех, перечисленных выше.
Связь между температурой и кинетической энергией атома можно описать следующей формулой:
Еh = 3/2rT, где
r ─ постоянная Больцмана (1,380*10-16 эрг/град).
Вернуться к содержанию
Как из питательных веществ освобождается энергия?
В процессе извлечения энергии из питательных веществ есть 3 условных этапа;
- Подготовительный. Этот этап требуется для перевода биополимеров в клетках пищи в мономеры. Эта форма лучше всего подходит для извлечения энергии. Этот процесс (гидролиз) протекает в кишечнике или внутри. Гидролиз идёт с участием лизосом и ферментов цитоплазмы. Энергетическая ценность этого этапа нулевая. На этой стадии высвобождается 1 процент энергетической ценности субстратов, и вся она теряется в виде тепла;
- На втором этапе частично распадаются мономеры с образованием промежуточных продуктов. Образуются кислоты цикла Кребса и ацетил─КоА. Количество исходных субстратов на этой стадии уменьшается до трёх и высвобождается до 20 процентов энергетического запаса субстратов. Процесс идёт анаэробно, то есть, без доступа кислорода. Энергия частично накапливается в фосфатных связях АТФ, а остаток расходуется в форме тепла. Распад мономеров идёт в гиалоплазме, а остальные процессы ─ в митохондриях;
- На заключительном этапе происходит распад мономеров до Н2O и СO2 в реакции с участием кислорода. Биологическое окисление происходит с полный высвобождением энергетического запаса. Из 3 трёх метаболитов, которые присутствовали на предыдущем этапе, остаётся лишь H2. Он является универсальным топливом в цепочке дыхания. На этом этапе освобождаются оставшиеся 80 процентов энергетического запаса. Часть энергии выходит в виде тепла, а остальная накапливается в фосфатных связях. Все реакции этого этапа идут в митохондриях.
Высвобождение энергии в живых клетках происходит постепенно. На всех этапах выделения она может накапливаться в химической форме, удобной для клеток вещества. Энергетическое строение клетки включает 3 разных функциональных блока, в которых идут различные процессы:
- I─процессы (образование субстратов окисления, которые соответствую окислительному ферменту в клетках);
- Блок S-H2 (субстрат окисления);
- Процессы H генерации водорода. На выходе получается КН2 (водород с коферментом).
Вот такие сложные многоступенчатые процессы происходят во время преобразования солнечной энергии в растениях и живых организмах.
Вернуться к содержанию
Опрос
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию